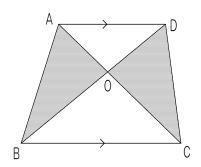
三角形と四角形(平行四辺形)					
学年		組		氏名	

1 AD $/\!\!/$ BCである台形ABCDの対角線の交点をOとします。このとき, \triangle AOB= \triangle DOCであることを, \triangle ABD= \triangle DCAを示して次のように証明しました。() にあてはまる語句や記号をかきなさい。

(証明)


仮定から, AD // BC

(底辺) と (高さ) が等しいから△ABD= (△DCA) …①

 $\sharp \mathcal{L}$, $\triangle AOB = \triangle ABD - (\triangle AOD) \cdots ②$

 $\triangle DOC = \triangle DCA - (\triangle A O D) \cdots$ ①, ②, ③から

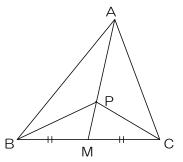
 $\triangle AOB = \triangle DOC$

2 右の図の \triangle ABCにおいて、Mは辺BCの中点、Pは線 β AM上の点です。このとき、

 $\triangle ABP = \triangle ACP$ が成り立つことを証明しなさい。

(例)

Mは辺BCの中点なので、BM=CM


底辺と高さが等しいので,

 $\triangle A B M = \triangle A C M \cdots \textcircled{1}$

同様に、 $\triangle PBM = \triangle PCM \cdots 2$

 \sharp た, \triangle A B P = \triangle A B M - \triangle P B M \cdots ③ \triangle A C P = \triangle A C M - \triangle P C M \cdots ④

①, ②, ③, ④から $\triangle \land B \land P = \triangle \land C \land P$

【ポイント】

- ・式が等しい根拠をかいている。「…ので、~」というかき方を意識させましょう。
- 面積が等しい三角形から、 面積が等しい三角形をひ くことをかいている。
- 文だけでかいていても内容が合っていれば正解とする。

どんな台形でも三角形でもここで証明したことは成り立ちます。