《単元名》

第3学年「8 じしゃくにつけよう」

東京書籍「新しい理科3」P106~117

1月上旬~1月下旬

8時間扱い

《単元の系統図》

√ 本単元との直接的なつながり

₩ 間接的なつながり

1・2学年生活科

生活体験

磁石を用いている物を使用した体験

【3学年「太陽を調べよう」】

【3学年「風やゴムで動かそう」】

【3学年「明かりをつけよう」】

鉄やアルミニウムなどの金属は,電気を通す。 紙、ガラス、プラスチックなどは、電気を通さない。

【3学年「じしゃくにつけよう」】(本単元)

「どんな物が、じしゃくにつ くのだろうか」

磁石は,鉄でできた物を引

き付ける。 紙やガラス, プラスチック, アルミニウムなどの鉄以外の 金属は、磁石に付かない。

「じしゃくのきょくには, んなせいしつがあるのだろ うか」

2つの磁石を近付けた時, 違う印の極同士は引き合い, 同じ印の極同士は退け合う。

「鉄は、じしゃくにつける

と, じしゃくになるのだろうか」 磁石に付けた鉄は, 鉄でできた物を引き付け, N極やS極があり, 磁石になる。

【4学年「電気のはたらき」】

【5学年「ふりこのきまり」】

【5学年「電流がうみ出す力」】

電磁石は、電流が流れている間、磁石と同じ働きをもつ。 電磁石には、磁石と同じように、N極とS極がある。 電流の向きが反対になると,極が反対になる。

【6学年「てこのはたらき」】

6学年「電気とわたしたちのくらし」

電気は、発電機などでつくることができる。 電気は、光、音、運動などに変えて、使うことができる。

【中1学年「身のまわりの現象」】

【中2学年「電気の世界】

- 電流と磁界
- 電流がつくる磁界
- 磁界中の電流が受ける力
- 電磁誘導と発電

【中3学年「運動とエネルギー」】

【中3学年「科学技術と人間」】

【中3学年「自然と人間」】

《単元の目標》

磁石に付く物に興味をもち、いろいろな物に磁石を近付けて、磁石に付く物と付かない物を判別し、実験の結果から、磁石が鉄を引き付けることをとらえることができるようにする。また、磁石は、磁石に付かない物が間にあっても鉄を引き付けることを、電気と比較してとらえることができるようにする。また、異極同士は引き合い、同極同士は退け合うこと、鉄は磁石に付けると磁石の働きをもつようになることを調べ、磁石の性質についての考えをもつことができるようにする。

《単元の流れ》 8時間扱い

ねらい	時	段階	学習活動	工夫点
1 じしゃくにつ	く物を	とさがそう 2時間		
いろいろな物に磁石を近付けて、磁石に付く物と付かない物との違いに興味をもつ。	1	問題を見いだす 予想や仮説をもつ 概察、実験の方法を考える 観察、実験を行う	・ 事象Aと事象B, 事象Cを比較し, 共通点と差異点を見いだす。 ・ 事象の違いが生じた要因を考えながら, 問題を見いだす。 ・ 磁石に付く物の性質について考える。 ・ どんな物が磁石に付くのかを調べる 方法を考える。 ・ どんな物が磁石に付くのか, 結果を 予想する。	複数事 <u>象の提示</u> 工夫点 1 ポイントを明確 にして <u>話し合う</u> 工夫点 2
いろいろな物に磁石を近付けて、磁石に付く物を探し、その性質をまとめ、理解を深める。	1	観察,実験を行う 結果を整理する 考察し,結論を得る 振り返り,広げる	 どんな物が磁石に付くのかを調べる。 実験の結果をまとめ、確認する。 磁石に付いた物と付かなかった物を、グループで分類する。 結果から気付いたことをノートに記入し、グループで話し合う。 磁石と鉄が付く性質を確認し、性質を利用している物を探す。 	
2 きょくのせい	しつき	と調べよう 2時間		
磁石の極について知り、極の性質に興味をもつ。	1	問題を見いだす 予想や仮説をもつ 観察、実験の方法を考える	・ 簡単な実験を通して磁石の極を実感し、極の説明を聞く。 ・ 事象Aと事象Bを比較し、共通点と 差異点を見いだす。 ・ 事象の違いが生じた要因を考えながら、問題を見いだす。 ・ 磁石の極の性質について考える。 ・ 磁石の性質を調べる方法を考える。	複数事 <u>象の提示</u> 工夫点 3 ポイントを明確 にして <u>話し合う</u> 工夫点 4
・ 磁石の極の性 質を調べ,まと め,理解を深め る。	1	観察,実験を行う 結果を整理する 考察し,結論を得る 振り返り,広げる	・ 磁石の極の性質を調べる。・ 実験の結果をまとめ、確認する。・ 結果から気付いたことをノートに記入し、グループで話し合う。・ 方位磁針の性質を知り、その性質が関係している現象や物について考える。	
3 じしゃくにつ	けた剣	佚を調べよう 4時	間	
・ これまでの学習経験を生かし、 という では、 はい で で で で で で で で で で で で で で で で で で	2	問題を見いだす 予想や仮説をもつ 観察,実験の方法を考える 観察,実験を行う 結果を整理する 考察し,結論を得る	・ 事象 A と事象 B を比較し、共通点と 差異点を見いだす。 ・ 事象の違いが生じた要因を考えながら、問題を見いだす。 ・ 鉄が磁化する性質について考える。 ・ 鉄が磁化することを調べる方法を考える。 ・ 鉄が磁化することを調べる。 ・ 実験の結果をまとめ、確認する。 ・ 結果から気付いたことをノートに記入し、グループで話し合う。	複数事 <u>象の提示</u> 工夫点 5 ポイントを明確 にして <u>話し合う</u> 工夫点 6
磁石の性質を 利用したものづ くりを行い、磁 石の利用につい て理解を深め る。	2	振り返り、広げる	 スチール缶とアルミニウム缶に磁石を近付け、その違いを比較し、スチール缶は鉄製であることを考える。 スチール缶の材質の性質を利用して、アルミニウム缶と分別する方法を考える。 学んだことを生かしたものづくりを行い、考えたことや感じたことをまとめる。 	複数事象の提示 要因の <u>考察</u> 工夫点 7 環境に目を向け させる 工夫点 8 学んだことを生 かしたものづく り 工夫点 9

第3学年「8 じしゃくにつけよう」

東京書籍「新しい理科3」P108~109 1月上旬~1月下旬 本時 1 / 8

《本時のねらい》

いろいろな物に磁石を近付けて、磁石に付く物と付かない物との違いに興味をもつ。

《問題を見いだす段階の働き掛け》

|工夫点1|| 非金属と磁石に付く金属,磁石に付かない金属を提示し,それぞれに磁石を近付けさ せ, 比較させる。色(金属光沢)や形, 硬さなどの共通点と差異点から, **磁石に付く物** にはどのような性質があるのか考えさせる。

〈事象A〉非金属 プラスチックのスプー〉

〈事象B〉磁石に付く金属 鉄製のスプーン

〈事象C〉磁石に付かない金属 アルミ製の器

AとBは形が同じだが、金属光沢はAにはなく、磁石に付かない。 BとCはどちらも金属光沢はあるが、形が違い、Cは磁石に付かない。

《予想や仮説をもつ段階の働き掛け》

色(金属光沢)や形,硬さなどの差異点に着目させ,**銀色の物や硬い物などが磁石に付くので** はないかと考えさせる。

《観察,実験の方法を考える段階の働き掛け》

|工夫点2|| 磁石に付くの物を調べる方法を,児童と話し合いながらポイントを確認させ.見通し をもたせる。

《本時の学習過程》

段階

あらかじめもっている児童の意識

予想される児童の意識

学習活動

児童にもたせたい意識

0 教師の働き掛け

働き掛けの意図 指導上の留意点

実感を伴った理解を図る場面

問題を見いだす

棒磁石に触 これまでの 生活体験を考え る。

- ・ランドセルや筆箱など、磁石を利用している物を使用したことがある。 ・金属のスプーンは電流を流す。
- 物をくっつけたりしたよ。 砂場で砂鉄を集めたりしたよ。
-) (棒磁石に,触らせながらながら) 磁石で遊んだりしたことはありますか。どんな遊びをしま したか。
- 棒磁石に触れさせ、これまでの 生活体験を想起させる。

| 工夫点1 (事象A, B, Cを提示して) A, B, Cの3つの物は, 生活の中でよく使う物です。それぞれに磁気を近けばて

- 事象Aと事象 B, 事象 C を比 較し、共通点と 差異点を見いだ す。
- ▼ どれも見たことがあるよ。
- 各グループにA, B, Cを配付し, 自由に磁石を近付けさせ, 体験させ る。
- 磁石に付く物と付かない物がある んだ。
- Bだけ磁石に付いた。
- BとCは、色が銀色だ。 BとCは、Aよりも硬い。 AとBは、形が同じだ。
- ょう。3つの物を比べて、何が 同じで、何が違いますか。 具体的な体験 非金属Aと磁石に付く金属B,
 - 磁石に付かない金属Cに磁石を近付けさせ、磁石に付く物の性質に 気付かせる。
 - 表面を塗装している物は避け、金属光沢観察できる物を用意し、磁石に付く物と付かない物の性でである。 ように留意する(空き缶などは塗 装がしてあり、金属光沢が分かり にくい)。

● 事象の違いが 生じた要因を考 えながら,問題 を見いだす。	▼ 磁石に付く物はどんな物かな。 ▼ 形が関係しているのかな。 ▼ 色が関係しているのかな。 ▼ 硬さが関係しているのかな。	● 今までの意見から、問題を整理しましょう。 ○ 「磁石に付く物と付かない物」の性質に視点を揃えさせ、話合いを通して、児童の意見を整理する。
		\ \(\mathreal{O}\) \(\mathreal{I}\) \(\mathreal{O}\) \(\mathreal\) \(\mathreal{O}\) \(\mathreal\)
予想や仮説をもつ● 磁石に付く物の性質について考える。	▼ どんな物が磁石に付くだろう。 ■ 磁石に銀色のスプーンを近付けたときに磁石に付いたので、銀色の物が磁石に付くだろう。 ■ 磁石に硬いスプーンを近付けたときに磁石に付くだろう。	 ② どんな物が磁石に付くと思いますか。理由も考えてノートに書きましょう。 主体的な問題解決 ○ これまでの生活体験や提示した複数事象を基に考えさせる。
観察, 実験の 方法を考える ● どんな物が磁 石に付くのかを	▼ 何を調べよう。 1 <i>磁石にはどんな物が引き付けられるのかを調べる。</i>	
調べる方法を考える。	▼ どうやって調べよう。 2 磁石に調べたい物を近付ける。 2 クリップなど、銀色の物を調べる。 2 はさみの刃の部分など、硬い物を 調べる。	○ 自ら考えた方法で調べさせることによって、必要感をもたせ、意欲的に取り組ませる。 ② 工夫点2 (話合いのポイント) ① 何について調べますか。 ② どのような方法で調べますか。 ③ 問題について調べるためには、
	▼ 何を見ればいいかな。3 磁石に引き付けられるのかどうかを見る。▲ 電気を通す物を調べた時に、表を	何を見ればよいですか。 ④ どのように記録しますか。 ⑤ 磁石を近付けてはいけない物があります。CD,時計パソコンに磁石を近付けると、壊れてしまいます。 主体的な問題解決
	利用して記録した。 4 電気を通す物を調べた時と同じように、表に記録する。 じしゃくにつく: 〇 調べた物できづいたこと	○ 大切な点を押さえた話合いになるよう,教師がポイントを把握し,実験方法を考えさせる。 □ (②について)身近な物で,形や色,硬さをイメージさせながら考えさせる。その際に単に「はさみ」と考えさせるのではなく,「刃の
	まそう けっか (色やかたさ) 5 CD, 時計, パソコンには磁石を 近付けないようにする。	部分」「持ち手の部分」など、その材質に視点を向けさせる。 □ (④について)前単元「明かりをつけよう」で活用した表による分類、整理方法を考えさせる。 □ (⑤について)時計やパソコン、CDなど、磁気の影響を受けやす
観察,実験を行う ● どんな物を調べるのか,結果を予想しながら考える。	▼ どんな物が磁石に付くのかな。 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	い物に磁石を近付けないように、磁石の取り扱いを指導する。 「の 調べる方法が決まりました。 どんな物で調べるのか、結果を 予想しながら考えましょう。 主体的な問題解決
<i>→</i> んる。	クリップ 〇 はさみの 切るところ はさみのもつところ	○ 結果を予想しながら調べる物を 考えさせ、見通しをもたせる。 □ 単に「はさみ」ではなく、「刃 の部分」「持ち手の部分」など、 物の材質に視点を向けさせる。 ② 次の時間は、磁石に付く物を 調べましょう。

第3学年「8 じしゃくにつけよう」 東京書籍「新しい理科3」P106~110

東京書籍「新しい理科3」P106~110 1月上旬~1月下旬 本時2/8

《本時のねらい》

いろいろな物に磁石を近付けて、磁石に付く物を探し、その性質をまとめ、理解を深める。

《振り返り、広げる段階の働き掛け》

磁石が鉄を引き付ける性質を利用している身近な物を探させ、生活の中で磁石が利用されていることを考えさせる。

《本時の学習過程》

		T T
段階 ● 学習活動	▲ あらかじめもっている児童の意識▼ 予想される児童の意識■ 児童にもたせたい意識	< ② 教師の働き掛け ○ 働き掛けの意図 □ 指導上の留意点 実感を伴った理解を図る場面
	引題 どんな物が, じしゃくにつ	くのだろうか。
観察,実験を行う ● どんな物が磁 石に付くのかを 調べる。	▼ ○○○は磁石に付くよ。▼ ○○○は磁石に付くと思ったけど,付かなかったよ。● 色や硬さなど,気付いたことも記録する。	
		○ ポイント②と⑤に注意させながら、磁石に付く物を調べさせ、結果を表に記入させる。
結果を整理する ● 観察,実験の 結果をまとめ,	■ 分かりやすく表にまとめる。 じしゃくにつく: ○	■ 調べたことを表にまとめ、グループで確認し、発表しましょす。 主体的な問題解決
確認する。	調べる物 つかない: × きづいたこと よそう けつか (色やかたさ)	ご 結果を分かりやすく、明確にまとめさせる。
	かたい はさみの () ぎん色で	□ 磁石を近付けた物が、磁石に付く、付かない以外にも、見て、触って気付いたことも表に整理させ
	はさみの もつところ O × 青色で かたい	るとよい。
	紙のコップ × からかい▼ 銀色で硬い物が磁石に付くみたい	
	だな。 ▼ やわらかいものは、磁石に付かな かったよ。	
● 磁石に付いた 物と付かなかっ た物を,グルー	じしゃくについた物 じしゃくにつかなかった物 クリップ 紙のコップ ぎん色のスプーン ガラスのコップ はさみの切るところ はさみのもつところ	■ 調べた結果をグループで仲間 分けし、表を使ってまとめましょう。主体的な問題解決
プで分類する。	はさみの切るところ ドライバーの まわすところ ▼ わたしの結果と同じだよ。	○ 調べた結果をグループ内で確認 させる。□ 模造紙などに表を書き,実物を
	■ 銀色で硬い物は磁石に付く。	日 関連組なるに表を置き、美物を 掲示したり、付箋紙に記入して貼
	■ 戦巴で使い物は燃石に行く。	るけの活り、自要紙に配べして知る

考察し,

う。

結論を得る 結果から気付 いたことをノ トに記入し,グ

ループで話し合

- 銀色で硬い物が磁石に付くよ。
- 硬くても,銀色でないと磁石に付 かない物もあるよ。
- 磁石は、鉄でできた物を引き付け る。
- 紙やガラス,プラスチックなどは, 磁石に付かない。
- アルミニウムなどの, 鉄以外の金 属も磁石に付かない。

結果からどんなことが分かり ますか。自分の考えをノートに 記入してから,グループで話し 合い、発表しましょう。

主体的な問題解決

磁石に付く物と付かない物の性 質の違いを比較させ、材質の違い に気付かせ, 磁石は鉄でできた物 を引き付けることに気付かせる。

振り返り、広げる

磁石は鉄に直 接触れなくて も、鉄を引き付 けることを確か める。

- 何でだろう。
- 黒板は鉄の色はしてないよ。
- 黒板の裏に、鉄が使われてるから だ。

磁石は、鉄を引き付けること が分かりました。 磁石はなぜ、黒板にも付くの でしょうか。考えてみましょう。

自然や生活との関係

黒板や塗装されている物(空き 缶など)など,一見,鉄とは分からない物も,材料に鉄が使われていることを考えさせる。

磁石は,磁石に付かない物が 間にあっても鉄を引き付けるこ とが出来ます。実際に確かめて みましょう

自然や生活との関係 具体的な体験

▼ どんな物を間に挟もう。

(実験例をした場合)

- クリップが宙に浮いたよ。
- 磁石を近付けると, クリップが浮 いたよ。
- 磁石に付く物は、鉄でできたクリ
- ップだ。 磁石に付かない物は、空気だ。
- 磁石と鉄の間に,紙やアルミ箔 を入れ、磁石に付かない物が間に あっても鉄を引き付けることを確 認させる。
- 実験をさせる際には,「磁石に 付く物と付かない物」を, 明確に

-(実験例) 磁石に引き付けられ, クリップが宙に浮く様 子を観察させる。

磁石、クリップ、糸、 セロハンテープ ※準備物

磁石と鉄が付 く性質を利用し ている物を探 す。

- どんなところに磁石は使われてる かな。 ▼ いろいろ探してみよう。
- ランドセルにも磁石が使われてい るよ。
- 筆箱にも磁石が使われているよ。
-) 磁石が鉄を引き付けることを 利用している物は,みなさんの 回りにもありますか。探してみ ましょう。 自然や生活との関係
- 磁石が鉄を引き付ける性質を利 用している身近な物を探させ,生 活の中で磁石が利用されているこ とを理解させる。
- □ 身近な物の例として、ランドセ ルの留め具, 筆箱の留め具, 黒板 に付ける磁石などが考えられる。 またスピーカーなど、外からは 見えないところにも, 磁石は利用 されている。

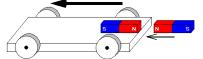
第3学年「8 じしゃくにつけよう」

東京書籍「新しい理科3」P111~112 1月上旬~1月下旬 本時3/8

《本時のねらい》

磁石の極について知り、極の性質に興味をもつ。

《問題を見いだす段階の働き掛け》


磁石の極を実感させるために、クリップを多く入れた箱の中に磁石を入れ、磁石の極にクリッ プがたくさん付いていることを観察させる。 →ポイント集2011 P33

クリップを箱の中に広げ, 磁石を置く。 ゆっくりと持ち上げると,極を確認できる。

工夫点3 磁石を取り付けた車に磁石を近付け、同極同士は退け合い、異極同士は引き付け合う ことを提示し、比較させる。その共通点と差異点から、磁石の極の性質について考えさせる。なお、提示する車は「風やゴムで動かそう」で使用した物を利用するとよい。 〈事象A〉N極をN極(車)に近付ける 〈事象B〉S極をN極(車)に近付ける

《予想や仮説をもつ段階の働き掛け》

車に近付けた磁石の極の差異に着目させ,**磁石の極の性質により,車の進む向きに違いができ** たのではないかと考えさせる。

《観察,実験の方法を考える段階の働き掛け》

工夫点4 磁石の性質を調べる方法を、**児童と話し合いながらポイントを確認させ、見通しをも** たせる。

《本時の学習過程》

段階

あらかじめもっている児童の意識

予想される児童の意識

学習活動 児童にもたせたい意識

【◎ 教師の働き掛け

- 働き掛けの意図 \bigcirc
- 指導上の留意点

実感を伴った理解を図る場面

問題を見いだす

磁石の両極に クリップが付く 簡単な実験を通 して磁石の極を 実感し,極の説明を聞く。

- 磁石は,鉄でできた物を引き付け る。
- たくさん付いたよ \blacksquare
- クリップは磁石の真ん中には付か ないで、磁石の両方の端にたくさん 付いている。
- (児童に実験させる)

前回, 磁石は鉄を引き付ける ことを調べました。箱の中に磁石を入れると、クリップは磁石のどこに、たくさん付いていま すか。 具体的な体験

クリップがたくさん付いている 磁石を観察させ,極を実感させる。

→ポイント集2011 P33

- クリップをたくさん入れた箱を 用意する。箱に磁石を入れ、鉄が極に強く引き付けられることを実 感させる。
 - クリップがたくさん付いて, 鉄を強く引き付けている部分を 極と言います。極にはN極とS 極があります。
- クリップは極にたくさん付いているんだ。
- 極にはN極とS極がある。

- 事象Aと事象 Bを比較し,共 通点と差異点を 見いだす。
- ▼ Aは手に持っている磁石から、逃
 - ▼ がているみたい。 ▼ Bは手に持っている磁石に,近付 いているみたい。

		A	В
おなじところ		同じ向きに磁石を車に向けている	
ちが	進む向き	にげる	近づく
うと ころ	近づけた きょく	Nきょく	Sきょく

- 工夫点3 (事象A, Bを見せて) この2つの車には磁石を付け ています。2つの車を比べて、 何が同じで、何が違いますか。 気付いたことをノートに書きま しょう。 具体的な体験
- 車の進む向きの違いから、車に 近付けた磁石の極に違いがあるこ とを考えさせる。
- 「風やゴムで動かそう」の単元 で使用した車を利用し、児童が十 分慣れ親しんだ物を活用する。

- 事象の違いが 生じた要因を考 えながら、問題 を見いだす。
- ▼ 車に近付けた磁石の極が違うから かな。
- 近付けた磁石の極の向きによって, 車の進む向きが違うと思う。
- 今までの意見から、問題を整 理しましょう。
- 「車に近付けた磁石の極」に視 点を揃えさせ、話合いを通して、 児童の意見を整理する。

問題 じしゃくのきょくには. どんなせいしつがあるのだろうか。

予想や仮説をもつ

- 磁石の極の性 質について考え る。
- 磁石同士を近付けると、どうなる んだろう
- N極を近付けると車は逃げて, を極を近付けると車は近付いたので, 磁石の極には, 引き付け合ったり, 退け合ったりする性質があるだろう。
- 磁石の極には, どんな性質が あると思いますか。理由も考え てノートに書きましょう。

主体的な問題解決

これまでの生活体験や提示した 複数事象を基に考えさせる。

観察. 実験の 方法を考える

磁石の性質を 調べる方法を考 える。

何を調べよう

- 2 つの磁石の極を近付けて, がどのように動くのかを調べる。 1 磁石
- どうやって調べよう。 動かす磁石と近付ける磁石が必要 だよ。
- 磁石が動くようにすればいいよ
- 動かす磁石を車に付けて、磁石を 2 近付ける。
- もしくは 動かす磁石を糸でつるして、磁石 を近付ける。
- 3 磁石を近付けた時に、どの極同士 だと引き付け合い,退け合うのかを 見る。
- どうやって調べたことをまとめよ
- 前回は表を使ってまとめたよ

表を使って極の性質をまとめる。 4

きょくの近づけかた	よそう	けっか
NきょくをSきょくに		
NきょくをNきょくに		
SきょくをSきょくに		
SきょくをNきょくに		

- 磁石の極の性質を調べる方法 を考えましょう。 **主体的な問題解決**
- 自ら考えた方法で調べさせるこ とによって,必要感をもたせ,意 欲的に取り組ませる
- 工夫点4 (話合いのポイント) 何について調べますか。 どのような方法で調べますか。 問題について調べるためには, Ť 2 3
- 何を見ればよいですか。
- どのように記録しますか。

→ポイント集2011 P34 主体的な問題解決

- 大切な点を押さえた話合いにな るよう,教師がポイントを把握し, 実験方法を考えさせる。
- (①について) 3つ以上の磁石を 用いると、極の働きをとらえにく くなる。
- (**②**について)事象A, Bの提示 で用いた車を用いた実験方法が考えられる。糸につるす方法はさら に磁石の自由度が増し、方位磁針の実験につながる方法である。

→ポイント集2011 P34

次の時間は、磁石の極の性質 を調べましょう。

本時 4 / 8

第3学年「8 じしゃくにつけよう」

東京書籍「新しい理科3」P111~112 1月上旬~1月下旬

《本時のねらい》

磁石の極の性質を調べ、まとめ、理解を深める。

《脹り返り.広げる段階の働き掛け》

磁石が方位磁針として利用されていることを知る。

《本時の学習過程》

段階

- あらかじめもっている児童の意識
- 予想される児童の意識
- 学習活動 児童にもたせたい意識

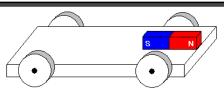
0 教師の働き掛け

- 働き掛けの意図 \bigcirc
- 指導上の留意点

実感を伴った理解を図る場面

問題 じしゃくのきょくには、どんなせいしつがあるのだろうか。

観察、実験を行う


磁石の極の性 質考え,実験の 予想をする。

きょくの近づけかた	よそう	けっか
NきょくをSきょくに	くっつく	
NきょくをNきょくに	くっつく	
SきょくをSきょくに	はなれる	
SきょくをNきょくに	はなれる	

磁石の極の性質を考え、実験 の予想をしましょう

これまでの生活体験や提示した

- 主体的な問題解決
- 複数事象を基に、実験の予想をさせ、見通しをもたせる。 磁石の極の性 ◎ 磁石の極の性質を調べ,気付
- 質を調べる。
- N極とN極を近付けたらどうなる だろう。
- ▼ しっかり記録をしよう。
- 磁石は物を引き付けるだけではな く、退かせる性質もある。

- 「風やゴムで動かそう」で用いた 車を利用し、磁石の極の性質で動く 車を作らせ、実験することも考えら れる。
- いたことも書きましょう 主体的な問題解決 考えた予想と比較させながら,
- 実験を行わせる。 車を使用して実験する際には, 提示した複数事象と同様の「磁石 の極の性質で動く車」を作らせる と、ものづくりも併せて行うこと ができる。
- □ 磁石の極の向きと, どのような 状態が「引き合う」「退け合う」 なのかを明確にさせる。

結果を整理する

観察,実験の結果をまとめ, 確認する。

■ 分かりやすく表にまとめる。

きょくの近づけかた	よそう	けっか
NきょくをSきょくに	くっつく	くっついた
NきょくをNきょくに	くっつく	はなれた
SきょくをSきょくに	はなれる	はなれた
SきょくをNきょくに	はなれる	くっついた

- 磁石がくっついたり、離れたりし たよ。
- 調べたことを表にまとめ、 ループで確認し,発表しましょ う。 主体的な問題解決
- 結果を正確にまとめさせる。

結論を得る

結果から気付 いたことをノー トに記入し,グ ループで話し合 う。

2つの磁石を近付けた時,磁石は. 違う極同士は引き合い、同じ極同士 は退け合う。


結果からどんなことが分かり ますか。自分の考えをノートに 記入してから,グループで話し 合い,発表しましょう。

主体的な問題解決

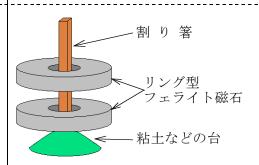
近付けた磁石の極に注目させ, 結果から極の性質を考えさせる。

振り返り,広げる

- 磁石の極の性 質(異極同士が 引き合う性質)から、方位磁針 の性質を考え る。
- 方位磁針で方位を調べたことがあ る。
- どうなるんだろう。
- どの磁石も同じ方向を向いている。

磁石の極の性質には, 引き合 う場合と退け合う場合があるこ とが分かりました

磁石の極の性質を利用した物 がみなさんの周りにもたくさん あります。磁石を糸で静かに吊 してみましょう。


→ポイント集2011 P34 自然や生活との関係 具体的な体験

- 磁石の極の異極同士が引き合う 性質の活用法を説明し, 方位磁針 の性質を考えさせる。
- 実際の方位磁針と比較させなが ら,観察させる。
- 磁石を自由に動くようにして おくと、N極は北、S極は南の 方位を指します。これは地球が、 北極がS極、南極がN極となっている大きな磁石になっていて、違う極同士が引き合っているか らです。この性質を利用した物 が方位磁針です。

自然や生活との関係

地球は核の運動により,大きな 磁石となっている。N極が北を、 S極が南を向くことから、地球は 「北極側=S極」「南極側=N極」 となっている。

磁石の極の性 質(同極同士が 退け合う性質) を利用している 物を考える。

- どうなるんだろう。 磁石が浮いた。
- どういう順番だろう。
- S極、S極、N極、N極・・・の順番 になっている。
- すごいな。
- 乗ってみたいな。
- 乗り物にも、磁石は利用されてい るんだ

- リング型の磁石を宙に浮かせ たいと思います。 (2~4つのリング型磁石が宙に
 - 浮く様子を見せる)

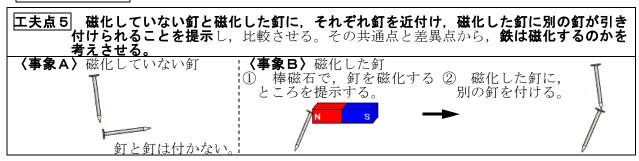
自然や生活との関係 具体的な体験

- 磁石の極の同極同士が退け合う 性質を利用した,簡単な実験を見せ,極の性質を考えさせる。
 □ 準備物
- - ・リング型フェライト磁石:

 $2\sim4$

- ・割り箸:1本
- ・割り箸を固定する台(粘土など)
- 磁石の極の順番がどうなって いると,このように磁石は浮く のでしょうか。自然や生活との関係
- このように磁石の極を退け合うように並べると磁石は浮きま この性質を利用している物 がリニアモーターカーです。

自然や生活との関係


- 磁石の極の同極同士が退け合う 性質の活用法を理解させる。
- リニアモーターカーの写真や模 型などを提示する。リニアモータ ーカーの駆動原理は,電磁石で駆 動しているが、ここでは磁石の極 の退け合う性質を利用しているこ とだけを伝える。

第3学年「8 じしゃくにつけよう」 東京書籍「新しい理科3」P113~116 1月上旬~1月下旬 本時5・6/8

《本時のねらい》

これまでの学習経験を生かし、磁石に付けた鉄が、磁石になっていることを調べ、まとめ、理 解する。

《問題を見いだす段階の働き掛け》

《|予想や仮説をもつ|段階の働き掛け》

釘同士が引き付け合っていることに着目させ**,釘が磁化したことにより,釘同士が引き付け合** ったのではないかと考えさせる。

《観察,実験の方法を考える段階の働き掛け》

|工夫点6|| 鉄が磁化することを調べる方法を,**児童と話し合いながらポイントを確認させ,見通** しをもたせる。

/十叶~宗33 /B 40 //

《本時の学習過程》 <u>段階</u> ● 学習活動	▲ あらかじめもっている児童の意識 ● 教師の働き掛け ▼ 予想される児童の意識 ● 働き掛けの意図 ■ 児童にもたせたい意識 □ 指導上の留意点 実感を伴った理解を図る場面
問題を見いだす ■ 事象Aと事象 Bを比較し, 通点と差異点 見いだす。	 磁石は、鉄を引き付ける。 2つの磁石を近付けた時、違う極同士は引き合う。 ▼ 釘とクリップがくっついているよ。 ■ 釘が磁石のようになっているよ。 ■ なびじところ ・ 同じくぎを使っている
● 事象の違いが 生じた要因を考 えながら,問題 を見いだす。	 ▼ 釘は鉄で磁石ではないから、他の 釘は付かないはずだよ。 ▼ 磁石に付けなかった釘には、他の 釘は付かなかったよ。 ● 鉄は、磁石に付けると、磁石になると思う。 ○ 「釘に磁石と同じ性質が生じた」 ことに視点を向けさせ、話合いを 通して、児童の意見を整理する。
問題 鉄	は、じしゃくにつけると、じしゃくになるのだろうか。

予想や仮説をもつ

- 鉄が磁化する 性質について考 える。
- 極の性質を調べた時に, 釘同士が 引き付け合い、たくさん付いた。
- 釘にクリップがたくさん付いてい たので,鉄は,磁石に付けると,磁 石になるだろう。
- 鉄は本当に磁石になるのかな。

鉄に磁石を付けると,磁石に 0 なると思いますか。理由も考え てノートに書きましょう。

主体的な問題解決

これまでの生活体験や学習経験, 提示した複数事象を基に考えさせ

観察,実験の 方法を考える

鉄が磁化する とを調べる方 法を考える。

何を調べよう。

- 鉄を磁石に付けると、磁石になる 1 のかを調べる。
 - どうやって調べよう
- 磁石にはどんな性質があったか
- 磁石に釘を付ける。 2 磁石に付けた釘に、鉄を近付ける。 2 磁石に付けた釘に,磁石を近付け
- 磁石に付けた釘を糸でつるして 方位磁針と同じ方向を向くか,確認
- 何を見ればいいかな
- 3 磁石に付けた釘に、鉄を近付け、
- 引き付けるかを見る。 3 磁石に付けた釘に、磁石を近付け て、引き合ったり、退け合ったりす るかを見る。

鉄は磁石になるのかを調べる 方法を考えましょう。

主体的な問題解決

自ら考えた方法で調べさせるこ とによって、必要感をもたせ、意欲的に取り組ませる。

工夫点6 (話合いのポイント) <u>何につ</u>いて調べますか。

どのような方法で調べますか。 問題について調べるためには、 何を見ればよいですか。

主体的な問題解決

- これまでの学習経験から,以下 の磁石の性質を利用し,実験をす ることが考えられる。
 - 「磁石は鉄を引き付ける」
 - → 事象Bで提示したくぎ以外 の鉄製品に付ける
 - 「磁石の極は異極同士を近付 けると引き合い, 同極同士は退 け合うi
 - → 磁化した釘を糸でつるし 磁石を近付け, 釘の動きを観 察する。
 - 糸でつるすなど,磁石を自由 に動くようにしておくと,方位 磁針と同じ働きをする。

観察,実験を行う

- 鉄が磁化する ことを調べる。
- ▼ 正確に実験を行おう。
- しっかり記録をとろう。
- 鉄は磁石になるのかを調べま しょう。 主体的な問題解決
- 考えた予想と比較させながら, 実験を行わせる。
- 考えた実験方法の内、最低2種 類の実験を行う必要がある。

結果を整理する

- | 観察,実験の 結果をまとめ, 確認する。
- 磁石に付けた釘に、鉄の物が付い
- te. 磁石に付けた釘に,磁石を近付け ると,引き合ったり,退け合ったり
- した。 磁石に付けた釘を、糸でつるすと 方位磁針と同じ方向を向いた。
- _____ 調べたことを表にまとめ,ク ループで確認し、発表しましょ 主体的な問題解決
- 2種類以上の実験の結果を,正 確にまとめさせる。

考察し, 結論を得る

- 結果から気付 いたことをノー トに記入し,グ ループで話し合 う。
- 磁石に付けた鉄は、鉄でできた物 を引き付ける。
- 磁石に付けた鉄は、N極とS極が
- 2つの結果から,鉄は磁石に付け ると、磁石になる。
- 結果からどんなことが分かりますか。自分の考えをノートに記入してから、グループで話し 0 合い、発表しましょう。

主体的な問題解決

これまでの学習した磁石の性質 と,磁化させた釘の特徴を比較さ せ, 結果から鉄が磁化することを 考えさせる。

第3学年「8 じしゃくにつけよう」

東京書籍「新しい理科3」P115 1月上旬~1月下旬 本時7・8/8

《本時のねらい》

磁石の性質を利用したものづくりを行い、磁石の利用について理解を深める。

《脹り返り,広げる段階の働き掛け》

工夫点 7 スチール缶とアルミニウム缶に磁石を近付けさせ、スチール缶の材質を考えさせる。

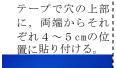
〈事象A〉スチール缶に磁石を近付ける

□工夫点8 スチール缶とアルミニウム缶の材質の違いを利用した、空き缶の分別方法について考 えさせる。

|工夫点9|| 磁石の性質を活用したものづくりを行わせ、理解を深めさせると共に、環境教育の一 <u>環としてゴミの分別についても考えさせる。</u>

空き缶分別装置の作成 〈準備物〉

- 備初/はさみ ・ セロハンテープ ・ 牛乳パック 4~6個 ・ 空き缶を入れるかご 2個強い磁石 2個(100円ショップで購入できる, 黒板にプリント貼り付ける時に使用する物)分別装置を固定する紐やガムテープ ・ 分別装置を設置する椅子 はさみ 2個


〈作り方〉所要時間15~25分

① 牛乳パックの底を切り② 牛乳パックの底側をり③ 下から13~15cm ④ 磁石をセロハン ⑤ 穴が斜め下を向くよ り取る。注ぎ口から4 箇所に切れ目を入れる。

つなぎ, 4~6個を 連結し, 固定する。

注ぎ口で包むように の位置に、アルミ テープで穴の上部 ニウム缶を落とす 穴 (15~17cm) を

うに,装置を椅子に 固定し, 穴と切り取 った底の下の2カ所 にかごを設置する

段階

あらかじめもっている児童の意識 lack

予想される児童の意識

学習活動

児童にもたせたい意識

{ ◎ 教師の働き掛け

- 働き掛けの意図
- 指導上の留意点

実感を伴った理解を図る場面

振り返り、広げる

(問題を見いだす) 事象Aと事象 Bを比較し、共 通点と差異点を 見いだす。

- 磁石は, 鉄でできた物を引き付け
- る。 アルミニウムは磁石に引き付けら れない。
- スチール缶とアルミニウム缶は. 分別しなければならない。
- 目もこしがもフただト

_▼ 見にことかめる甘によ。					
		A	В		
おなじところ		どちらも缶大きさが同じくらい「リサイクル」と書いてある			
ちがう ところ	かたさ	スチール かたい ひきつける	アルミ やわらかい ひきつけない		

工夫点7 (事象 A, B を児童に配付して) A, B の空き缶を比べて, 何が同じで, 何が違いますか。気付けたことをノートに書 きましょう。

自然や生活との関係 具体的な体験

- スチール缶とアルミニウム缶を 観察し、比較させ、硬さやマーク などの違いに気付かせる。
- 磁石はまだ使用させず、触った 感触などを確かめさせる。 ある物を改めて詳しく観察する, よい機会になると思われる。
- 工夫点 7 次に、A、Bの空 き缶に磁石を近付けて、比べて みましょう。

自然や生活との関係 具体的な体験

スチール缶とアルミニウム缶に

3年「8 じしゃくにつけよう」 【本時のねらいと学習過程フ・8/8】

磁石を近付けさせ、その違いを比較させ、スチール缶が磁石に付く とに気付かせる。

(予想や仮説をもつ)

- 事象の違いが 生じた要因を れまでの学習経 験を基に考え, 缶の材質につい て考える。
- ▼ 何でできているんだろう。
- スチール缶同士は付かないので、磁 石ではないだろう。
- 磁石に引き付けられたので、鉄で できているだろう。
- ◎ 工夫点7 今までの意見から、 スチール缶は何でできているか、 考えましょう。自然や生活との関係
- スチール缶が磁石に引き付けら れたことを基に、鉄製であること を考えさせる。

- 空き缶を分別 することに触 本時の学習 課題を確認す る。
- ▼ 空き缶を洗ってから,ゴミに出す
- スチール缶とアルミニウム缶を分 けて、ゴミに出す。
- 分別して、リサイクルする。
- 工夫点8 スチール缶は鉄で できています。スチール缶とア ルミニウム缶をゴミに出す時に、 気を付けなければいけないこと は、どのようなことでしょう。 自然や生活との関係
- これまでの生活体験から、空き 缶を種類別に分別してゴミに出す とを気付かせる。
- 今までの意見から, 問題を整 理しましょう。

問題 スチールかんとアルミニウムかんを分ける方法を考えよう。

- (観察,実験の方法を考える) 鉄の性質を利 用して、スチール缶とアルミニ ウム缶と分別す る方法を考え る。
- どんな方法があるだろう。
- たくさんあるから, クを見ながら分けるのは大変だな
- スチール缶は磁石に引き付けられたので、磁石を使えばアルミニウム 缶と分けられると思う。
- 工夫点8 リサイクルセンタ ーのように、 缶をたくさん分けなければいけない場合、 スチール缶が鉄でできていることを利 用して、アルミニウム缶と分け る方法には、どのような方法が あるでしょう。<u>自然や生活との関係</u>
- スチール缶が磁石に引き付けら れる性質を利用して, 分別する方 法を考えさせる。
- □ 大量の缶が集積されている写真 などを提示する。

(ものづくりを行う)

- 学んだことを 生かしたものづ くりを行う。
- スチール缶とアルミニウム缶を分 ける装置を作れるなんて, すごい。
- **▼** しっかり作ろう。

- 工夫点9 (分別装置を提示して) 磁石を利用して、スチール缶 とアルミニウム缶を分ける空き 缶分別装置を作りましょう。 自然や生活との関係 具体的な体験
- 磁石の性質を活用したものづく りを行わせ、実感を伴った理解を させる。
- 作り方をプリントなどにして, 配付する。

- 作った空き缶 分別装置を使っ て,空き缶を分 別する。
- ▼ ちゃんと分けられるかな。
- うまく分けられなかったら、装置 の角度や穴の大きさを変える。
- 完成した空き缶分別装置で, 空き缶を分けてみましょう。 自然や生活との関係 具体的な体験

(考察し,結論を得る) ものづくりを

- うまく作れて良かった
- ▼ りょくTF40 C 区がった。▼ 角度や穴の大きさを調整すること が難しかった。
-) 空き缶分別装置を作り、空き 缶を種類ごとに分けてみて、考 えたことや感じたことをノート に書きましょう。

- 通して考えたことや感じたこと をまとめる。
- きちんと分別をして、ゴミを捨て <u>る。</u>
- リサイクルやエコについて調べる。
- 空き缶に限らず,ゴミをきちんと分別することは,とても大切なことです。どれも大切な資源としてアウルをなる。 す。普段の生活でも気を付けま Ĺょう。 自然や生活との関係